JEE MAIN - Mathematics (2025 - 29th January Morning Shift - No. 20)

The integral $80 \int\limits_0^{\frac{\pi}{4}}\left(\frac{\sin \theta+\cos \theta}{9+16 \sin 2 \theta}\right) d \theta$ is equal to :
3 $ \log 4 $
4 $ \log 3 $
6 $ \log \frac{4}{3} $
2 $ \log 3 $

Explanation

$$\begin{aligned} & I=80 \int_0^{\frac{\pi}{4}}\left(\frac{\sin \theta+\cos \theta}{9+16(2 \sin \theta \cdot \cos \theta)}\right) d \theta \\ & =80 \int_0^{\frac{\pi}{4}} \frac{\sin \theta+\cos \theta}{9-16(1-2 \sin \theta \cdot \cos \theta-1)} d \theta \end{aligned}$$

$$\begin{aligned} &=80 \int_0^{\frac{\pi}{4}} \frac{\sin \theta+\cos \theta}{9+16-16(\sin \theta-\cos \theta)^2} \mathrm{~d} \theta\\ &\text { Let } \sin \theta-\cos \theta=\mathrm{t}\\ &(\cos \theta+\sin \theta) \mathrm{d} \theta=\mathrm{dt}\\ &=80 \int_{-1}^0 \frac{\mathrm{dt}}{25-16 \mathrm{t}^2}\\ &=\frac{80}{16} \int_{-1}^0 \frac{\mathrm{dt}}{\left(\frac{5}{4}\right)^2-\mathrm{t}^2}\\ &\left.=\frac{5}{2\left(\frac{5}{4}\right)} \ln \left|\frac{\frac{5}{4}+t}{\frac{5}{4}-t}\right|\right]_{-1}^0\\ &=2 \ln (1)+4 \ln 3\\ &=4 \ln 3 \end{aligned}$$

Comments (0)

Advertisement