JEE MAIN - Mathematics (2025 - 29th January Morning Shift - No. 18)
Define a relation R on the interval $ \left[0, \frac{\pi}{2}\right) $ by $ x $ R $ y $ if and only if $ \sec^2x - \tan^2y = 1 $. Then R is :
both reflexive and symmetric but not transitive
both reflexive and transitive but not symmetric
reflexive but neither symmetric not transitive
an equivalence relation
Explanation
$$\begin{aligned} & \sec ^2 x-\tan ^2 x=1 \quad(\text { on replacing } y \text { with } x) \\ & \Rightarrow \text { Reflexive } \\ & \sec ^2 x-\tan ^2 y=1 \\ & \Rightarrow 1+\tan ^2 x+1-\sec ^2 y=1 \\ & \Rightarrow \sec ^2 y-\tan ^2 x=1 \\ & \Rightarrow \operatorname{symmetric} \\ & \sec ^2 x-\tan ^2 y=1 \\ & \sec ^2 y-\tan ^2 z=1 \end{aligned}$$
Adding both
$$\begin{aligned} & \Rightarrow \sec ^2 x-\tan ^2 y+\sec ^2 y-\tan ^2 z=1+1 \\ & \sec ^2 x+1-\tan ^2 z=2 \\ & \sec ^2 x-\tan ^2 z=1 \\ & \Rightarrow \text { Transitive } \end{aligned}$$
hence equivalence relation
Comments (0)
