JEE MAIN - Mathematics (2025 - 29th January Morning Shift - No. 17)

Let the line x+y=1 meet the circle $x^2+y^2=4$ at the points A and B. If the line perpendicular to AB and passing through the mid-point of the chord AB intersects the circle at C and D, then the area of the quadrilateral ABCD is equal to :
$ \sqrt{14} $
$ 3\sqrt{7} $
$ 2\sqrt{14} $
$ 5\sqrt{7} $

Explanation

JEE Main 2025 (Online) 29th January Morning Shift Mathematics - Circle Question 5 English Explanation

By solving $\mathrm{x}=\mathrm{y}$ with circle

We get

$$\begin{aligned} & \mathrm{C}(\sqrt{2}, \sqrt{2}) \\ & \mathrm{D}(-\sqrt{2},-\sqrt{2}) \end{aligned}$$

By solving $\mathrm{x}+\mathrm{y}=1$ with circle $x^2+y^2=4$ we set

$$\mathrm{A}\left(\frac{1+\sqrt{7}}{2}, \frac{1-\sqrt{7}}{2}\right)$$

& $\mathrm{B}\left(\frac{1-\sqrt{7}}{2}, \frac{1+\sqrt{7}}{2}\right)$

$\therefore$ Area of Quadrilateral ACBD

$=2 \times$ Area of $\triangle \mathrm{BCD}$

$$\begin{aligned} & =2 \times \frac{1}{2}\left|\begin{array}{ccc} \sqrt{2} & \sqrt{2} & 1 \\ \frac{1-\sqrt{7}}{2} & \frac{1+\sqrt{7}}{2} & 1 \\ -\sqrt{2} & -\sqrt{2} & 1 \end{array}\right| \\ & =2 \sqrt{14} \end{aligned}$$

Comments (0)

Advertisement