JEE MAIN - Mathematics (2025 - 29th January Morning Shift - No. 15)
Let the area of the region
$ (x, y) : 2y \leq x^2 + 3,\ y + |x| \leq 3, \ y \geq |x - 1| $ be $ A $. Then $ 6A $ is equal to :
$ (x, y) : 2y \leq x^2 + 3,\ y + |x| \leq 3, \ y \geq |x - 1| $ be $ A $. Then $ 6A $ is equal to :
14
18
16
12
Explanation
$A \Rightarrow$ Rectangle ABDE $-$ Area of region EDC
$$\begin{aligned} & A \Rightarrow 4-2 \int_0^1(3-x)-\left(\frac{x^2+3}{2}\right) d x \\ & A \Rightarrow 4-2\left\{3 x-\frac{x^2}{2}-\frac{x^3}{6}-\frac{3}{2} x\right\}_0^1 \\ & A \Rightarrow 4-2\left\{3-\frac{1}{2}-\frac{1}{6}-\frac{3}{2}\right\}=\frac{7}{3} \end{aligned}$$
So $6 \mathrm{~A}=14$
Comments (0)
