JEE MAIN - Mathematics (2025 - 29th January Morning Shift - No. 15)

Let the area of the region

$ (x, y) : 2y \leq x^2 + 3,\ y + |x| \leq 3, \ y \geq |x - 1| $ be $ A $. Then $ 6A $ is equal to :
14
18
16
12

Explanation

JEE Main 2025 (Online) 29th January Morning Shift Mathematics - Area Under The Curves Question 9 English Explanation

$A \Rightarrow$ Rectangle ABDE $-$ Area of region EDC

$$\begin{aligned} & A \Rightarrow 4-2 \int_0^1(3-x)-\left(\frac{x^2+3}{2}\right) d x \\ & A \Rightarrow 4-2\left\{3 x-\frac{x^2}{2}-\frac{x^3}{6}-\frac{3}{2} x\right\}_0^1 \\ & A \Rightarrow 4-2\left\{3-\frac{1}{2}-\frac{1}{6}-\frac{3}{2}\right\}=\frac{7}{3} \end{aligned}$$

So $6 \mathrm{~A}=14$

Comments (0)

Advertisement