JEE MAIN - Mathematics (2025 - 29th January Morning Shift - No. 14)
Explanation
$$\begin{aligned} & L_1: \overrightarrow{\mathrm{r}}=(-\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}})+\lambda(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}) \\ & \Rightarrow \overrightarrow{\mathrm{r}}=(\lambda-1) \hat{\mathrm{i}}+2(\lambda+1) \hat{\mathrm{j}}+(\lambda+1) \hat{\mathrm{k}} \\ & L_2: \overrightarrow{\mathrm{r}}=(\hat{\mathrm{j}}+\hat{\mathrm{k}})+\mu(2 \hat{\mathrm{i}}+7 \hat{\mathrm{j}}+3 \hat{\mathrm{k}}) \\ & \Rightarrow \overrightarrow{\mathrm{r}}=2 \mu \hat{\mathrm{i}}+(1+7 \mu) \hat{\mathrm{j}}+(1+3 \mu) \hat{\mathrm{k}} \end{aligned}$$
For point of intersection equating respective components
$$\begin{aligned} &\begin{aligned} & \Rightarrow \lambda-1=2 \mu \quad\text{....... (1)}\\ & 2(\lambda+1)=1+7 \mu \quad\text{...... (2)}\\ & \lambda+1=1+3 \mu \quad\text{..... (3)} \end{aligned}\\ &\text { We get } \end{aligned}$$
$$\begin{aligned} & \Rightarrow \lambda=3 \text { and } \mu=1 \\ & \Rightarrow \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}=3 \hat{\mathrm{i}}+9 \hat{\mathrm{j}}+4 \hat{\mathrm{k}} \\ & L_3: \overrightarrow{\mathrm{r}}=2 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}+\alpha(3 \hat{\mathrm{i}}+9 \hat{\mathrm{j}}+4 \hat{\mathrm{k}}) \\ & \text { For } \alpha=2, \overrightarrow{\mathrm{r}}=8 \hat{\mathrm{i}}+26 \hat{\mathrm{j}}+12 \hat{\mathrm{k}} \end{aligned}$$
Comments (0)
