JEE MAIN - Mathematics (2025 - 29th January Evening Shift - No. 4)
If the domain of the function $ \log_5(18x - x^2 - 77) $ is $ (\alpha, \beta) $ and the domain of the function $ \log_{(x-1)} \left( \frac{2x^2 + 3x - 2}{x^2 - 3x - 4} \right) $ is $(\gamma, \delta)$, then $ \alpha^2 + \beta^2 + \gamma^2 $ is equal to:
186
179
195
174
Explanation
$$\begin{aligned} & f_1(x)=\log _5\left(18 x-x^2-77\right) \\ & \therefore 18 x-x^2-77>0 \\ & \quad x^2-18 x+77<0 \\ & \quad x \in(7,11) \alpha=7, \beta=11 \\ & f_2(x)=\log _{(x-1)}\left(\frac{2 x^2+3 x-2}{x^2-3 x-4}\right) \\ & \therefore \quad x-1>0, x-1 \neq 1, \frac{2 x^2+3 x-2}{x^2-3 x-4}>0 \\ & \quad x>1, x \neq 2, \frac{(2 x-1)(x+2)}{(x-4)(x+1)}>0 \\ & \quad x>1, x \neq 2, \end{aligned}$$
$$\begin{aligned} & \therefore \quad x \in(4, \infty) \\ & \therefore \gamma=4 \\ & \therefore \alpha^2+\beta^2+\gamma^2=49+121+16 \\ & =186 \end{aligned}$$
Comments (0)
