JEE MAIN - Mathematics (2025 - 29th January Evening Shift - No. 2)

Let $A = [a_{ij}]$ be a $2 \times 2$ matrix such that $a_{ij} \in \{0, 1\}$ for all $i$ and $j$. Let the random variable $X$ denote the possible values of the determinant of the matrix $A$. Then, the variance of $X$ is:
$\frac{5}{8}$
$\frac{1}{4}$
$\frac{3}{4}$
$\frac{3}{8}$

Explanation

$$\begin{aligned} & |A|=\left|\begin{array}{ll} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right| \\ & =a_{11} a_{22}-a_{21} a_{12} \\ & =\{-1,0,1\} \end{aligned}$$

$$\begin{array}{c|c|c|c} \mathrm{x} & \mathrm{P}_{\mathrm{i}} & \mathrm{P}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}} & \mathrm{P}_1 \mathrm{X}_{\mathrm{i}}{ }^2 \\ -1 & \frac{3}{16} & -\frac{3}{16} & \frac{3}{16} \\ 0 & \frac{10}{16} & 0 & 0 \\ 1 & \frac{3}{16} & \frac{3}{16} & \frac{3}{16} \\ \hline & & \sum \mathrm{P}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}=0 & \sum \mathrm{P}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}{ }^2=\frac{3}{8} \end{array}$$

$$\begin{aligned} & \therefore \operatorname{var}(\mathrm{x})=\sum \mathrm{P}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}^2-\left(\sum \mathrm{P}_{\mathrm{i}} X_{\mathrm{i}}\right)^2 \\ & =\frac{3}{8}-0=\frac{3}{8} \end{aligned}$$

Comments (0)

Advertisement