JEE MAIN - Mathematics (2025 - 29th January Evening Shift - No. 11)
If $\alpha x+\beta y=109$ is the equation of the chord of the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$, whose mid point is $\left(\frac{5}{2}, \frac{1}{2}\right)$. then $\alpha+\beta$ is equal to :
37
46
72
58
Explanation
$$\begin{aligned} &\text { Equation of chord } \mathrm{T}=\mathrm{S}_1\\ &\begin{aligned} & \frac{5}{2}\left(\frac{\mathrm{x}}{9}\right)+\frac{1}{2}\left(\frac{\mathrm{y}}{4}\right)=\frac{25}{36}+\frac{1}{16} \\ & \Rightarrow \frac{5 \mathrm{x}}{18}+\frac{\mathrm{y}}{8}=\frac{100+9}{144}=\frac{109}{144} \\ & \Rightarrow 40 \mathrm{x}+18 \mathrm{y}=109 \\ & \Rightarrow \alpha=40, \beta=18 \\ & \Rightarrow \alpha+\beta=58 \end{aligned} \end{aligned}$$
Comments (0)
