JEE MAIN - Mathematics (2025 - 29th January Evening Shift - No. 10)
The remainder, when $7^{103}$ is divided by 23, is equal to:
9
6
14
17
Explanation
$$\begin{aligned}
& 7^{103}=7\left(7^{102}\right)=7(343)^{34}=7(345-2)^{34} \\
& 7^{103}=23 \mathrm{~K}_1+7.2^{34} \\
& \text { Now } 7.2^{34}=7 \cdot 2^2 \cdot 2^{32} \\
& =28 \cdot(256)^4 \\
& =28(253+3)^4 \\
& \therefore 28 \times 81 \Rightarrow(23+5)(69+12) \\
& 23 \mathrm{~K}_2+60 \\
& \therefore \text { Remainder }=14
\end{aligned}$$
Comments (0)
