JEE MAIN - Mathematics (2025 - 28th January Morning Shift - No. 20)

The area (in sq. units) of the region $\left\{(x, \mathrm{y}): 0 \leq \mathrm{y} \leq 2|x|+1,0 \leq \mathrm{y} \leq x^2+1,|x| \leq 3\right\}$ is
$\frac{32}{3}$
$\frac{64}{3}$
$\frac{17}{3}$
$\frac{80}{3}$

Explanation

JEE Main 2025 (Online) 28th January Morning Shift Mathematics - Area Under The Curves Question 1 English Explanation

$$\begin{aligned} & \text { Area }=2\left[\int_0^2\left(\mathrm{x}^2+1\right) \mathrm{dx}+\int_2^3(2 \mathrm{x}+1) \mathrm{dx}\right] \\ & \Rightarrow \frac{64}{3} \quad \therefore(2) \end{aligned}$$

Comments (0)

Advertisement