JEE MAIN - Mathematics (2025 - 28th January Morning Shift - No. 11)
Explanation
$$\begin{aligned} &\text { Probability distribution }\\ &\begin{array}{c|c} \mathrm{x}_{\mathrm{i}} & \mathrm{p}_{\mathrm{i}} \\ \hline \mathrm{x}=0 & \frac{{ }^7 \mathrm{C}_2}{{ }^{10} \mathrm{C}_2}=\frac{42}{90} \\ \hline \mathrm{x}=1 & \frac{{ }^7 \mathrm{C}_1 \times{ }^3 \mathrm{C}_1}{{ }^{10} \mathrm{C}_2}=\frac{42}{90} \\ \hline \mathrm{x}=2 & \frac{{ }^3 \mathrm{C}_2}{{ }^{10} \mathrm{C}_2}=\frac{6}{90} \end{array} \end{aligned}$$
$$\begin{aligned} &\text { Now, }\\ &\begin{aligned} & \mu=\sum \mathrm{x}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}=\frac{42}{90}+\frac{12}{90}=\frac{54}{90} \\ & \sigma^2=\sum \mathrm{p}_{\mathrm{i}} \mathrm{x}_1^2-\mu^2=\frac{42}{90}+\frac{24}{90}-\left(\frac{54}{90}\right)^2 \\ & \Rightarrow \frac{66}{90}-\left(\frac{54}{90}\right)^2 \\ & \sigma^2 \Rightarrow \frac{28}{75} \therefore(1) \end{aligned} \end{aligned}$$
Comments (0)
