JEE MAIN - Mathematics (2025 - 28th January Morning Shift - No. 11)

Three defective oranges are accidently mixed with seven good ones and on looking at them, it is not possible to differentiate between them. Two oranges are drawn at random from the lot. If $x$ denote the number of defective oranges, then the variance of $x$ is
$26 / 75$
$14/25$
$18 / 25$
$28 / 75$

Explanation

JEE Main 2025 (Online) 28th January Morning Shift Mathematics - Probability Question 1 English Explanation

$$\begin{aligned} &\text { Probability distribution }\\ &\begin{array}{c|c} \mathrm{x}_{\mathrm{i}} & \mathrm{p}_{\mathrm{i}} \\ \hline \mathrm{x}=0 & \frac{{ }^7 \mathrm{C}_2}{{ }^{10} \mathrm{C}_2}=\frac{42}{90} \\ \hline \mathrm{x}=1 & \frac{{ }^7 \mathrm{C}_1 \times{ }^3 \mathrm{C}_1}{{ }^{10} \mathrm{C}_2}=\frac{42}{90} \\ \hline \mathrm{x}=2 & \frac{{ }^3 \mathrm{C}_2}{{ }^{10} \mathrm{C}_2}=\frac{6}{90} \end{array} \end{aligned}$$

$$\begin{aligned} &\text { Now, }\\ &\begin{aligned} & \mu=\sum \mathrm{x}_{\mathrm{i}} \mathrm{p}_{\mathrm{i}}=\frac{42}{90}+\frac{12}{90}=\frac{54}{90} \\ & \sigma^2=\sum \mathrm{p}_{\mathrm{i}} \mathrm{x}_1^2-\mu^2=\frac{42}{90}+\frac{24}{90}-\left(\frac{54}{90}\right)^2 \\ & \Rightarrow \frac{66}{90}-\left(\frac{54}{90}\right)^2 \\ & \sigma^2 \Rightarrow \frac{28}{75} \therefore(1) \end{aligned} \end{aligned}$$

Comments (0)

Advertisement