JEE MAIN - Mathematics (2025 - 28th January Morning Shift - No. 10)

Two number $\mathrm{k}_1$ and $\mathrm{k}_2$ are randomly chosen from the set of natural numbers. Then, the probability that the value of $\mathrm{i}^{\mathrm{k}_1}+\mathrm{i}^{\mathrm{k}_2},(\mathrm{i}=\sqrt{-1})$ is non-zero, equals
$\frac{3}{4}$
$\frac{1}{2}$
$\frac{1}{4}$
$\frac{2}{3}$

Explanation

$i^{k_1}+i^{k_2} \neq 0 \quad i^{k_1} \rightarrow 4$ option for $\mathrm{i},-1,-\mathrm{i}, 1$

Total cases $\Rightarrow 4 \times 4=16$

Unfovourble cases $\Rightarrow \mathrm{i}^{\mathrm{k}_1}+\mathrm{i}^{\mathrm{k}_2}=0$

$$\left\{\begin{array}{c} 1,-1 \\ -1,1 \\ i,-i \\ -i, i \end{array}\right\}$$

4 Cases $\Rightarrow$ Probability $=\frac{16-4}{16}=\frac{3}{4}$

Comments (0)

Advertisement