JEE MAIN - Mathematics (2025 - 28th January Evening Shift - No. 9)
Let $f: \mathbf{R}-\{0\} \rightarrow(-\infty, 1)$ be a polynomial of degree 2 , satisfying $f(x) f\left(\frac{1}{x}\right)=f(x)+f\left(\frac{1}{x}\right)$. If $f(\mathrm{~K})=-2 \mathrm{~K}$, then the sum of squares of all possible values of K is :
9
1
6
7
Explanation
as $f(x)$ is a polynomial of degree two let it be
$$f(x)=a x^2+b x+c \quad(a \neq 0)$$
on satisfying given conditions we get
$$C=1 \& a= \pm 1$$
hence $f(x)=1 \pm x^2$
also range $\in(-\infty, 1]$ hence
$$\begin{gathered} f(x)=1-x^2 \\ \text { now } f(k)=-2 k \end{gathered}$$
$$1-\mathrm{k}^2=-2 \mathrm{k} \rightarrow \mathrm{k}^2-2 \mathrm{k}-1=0$$
let roots of this equation be $\alpha \& \beta$ then $\alpha^2+\beta^2=(\alpha+\beta)^2-2 \alpha \beta$
$$=4-2(-1)=6$$
Comments (0)
