JEE MAIN - Mathematics (2025 - 28th January Evening Shift - No. 8)
If the components of $\vec{a}=\alpha \hat{i}+\beta \hat{j}+\gamma \hat{k}$ along and perpendicular to $\vec{b}=3 \hat{i}+\hat{j}-\hat{k}$ respectively, are $\frac{16}{11}(3 \hat{i}+\hat{j}-\hat{k})$ and $\frac{1}{11}(-4 \hat{i}-5 \hat{j}-17 \hat{k})$, then $\alpha^2+\beta^2+\gamma^2$ is equal to :
16
23
26
18
Explanation
$$\begin{aligned}
& \text { let } \\
& \overrightarrow{\mathrm{a}}_{11}=\text { component of } \overrightarrow{\mathrm{a}} \text { along } \overrightarrow{\mathrm{b}} \\
& \overrightarrow{\mathrm{a}}_1=\text { component of } \overrightarrow{\mathrm{a}} \text { perpendicular to } \overrightarrow{\mathrm{b}} \\
& \overrightarrow{\mathrm{a}}_{11}=\frac{16}{11}(3 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}}) \\
& \overrightarrow{\mathrm{a}}_1=\frac{1}{11}(-4 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}-17 \hat{\mathrm{k}}) \\
& \because \overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{a}}_{11}+\overrightarrow{\mathrm{a}}_1 \\
& \therefore \overrightarrow{\mathrm{a}}=\frac{16}{11}(3 \hat{\mathrm{i}}+\hat{\mathrm{j}}-\hat{\mathrm{k}})+\frac{1}{11}(-4 \hat{\mathrm{i}}-5 \hat{\mathrm{j}}-17 \hat{\mathrm{k}}) \\
& \quad=\frac{44}{11} \hat{\mathrm{i}}+\frac{11}{11} \hat{\mathrm{j}}-\frac{33}{11} \hat{\mathrm{k}} \\
& \overrightarrow{\mathrm{a}}=4 \hat{\mathrm{i}}+\hat{\mathrm{j}}-3 \hat{\mathrm{k}} \quad \\
& \begin{array}{l}
\alpha=4 \qquad \beta=1\qquad \gamma=-3\\
\alpha^2+\beta^2+\gamma^2=16+1+9=26
\end{array}
\end{aligned}$$
Comments (0)
