JEE MAIN - Mathematics (2025 - 28th January Evening Shift - No. 5)

The square of the distance of the point $ \left( \frac{15}{7}, \frac{32}{7}, 7 \right) $ from the line $ \frac{x + 1}{3} = \frac{y + 3}{5} = \frac{z + 5}{7} $ in the direction of the vector $ \hat{i} + 4\hat{j} + 7\hat{k} $ is:
66
54
41
44

Explanation

JEE Main 2025 (Online) 28th January Evening Shift Mathematics - 3D Geometry Question 11 English Explanation

$$\begin{aligned} & L=\frac{x+1}{3}=\frac{y+3}{5}=\frac{z+5}{7} \\ & P Q=\frac{x-\frac{15}{7}}{1}=\frac{y-\frac{32}{7}}{4}=\frac{z-7}{7}=\lambda \end{aligned}$$

$$\begin{aligned} &\Rightarrow \mathrm{Q}\left(\lambda+\frac{15}{7}, 4 \lambda+\frac{32}{7}, 7 \lambda+7\right)\\ &\text { Since } \mathrm{Q} \text { lies on line } \mathrm{L}\\ &\begin{aligned} & \text { So, } \frac{\lambda+\frac{15}{7}+1}{3}=\frac{7 \lambda+7+5}{7} \\ & \Rightarrow 7 \lambda+22=21 \lambda+36 \\ & \Rightarrow \lambda=-1 \\ & \therefore \text { Point } Q\left(\frac{8}{7}, \frac{4}{7}, 0\right) \\ & \mathrm{PQ}=\sqrt{\left(\frac{15}{7}-\frac{8}{7}\right)^2+\left(\frac{32}{7}-\frac{4}{7}\right)^2+(7-0)} \\ & \mathrm{PQ}=\sqrt{66} \\ & \Rightarrow(\mathrm{PQ})^2=66 \end{aligned} \end{aligned}$$

Comments (0)

Advertisement