JEE MAIN - Mathematics (2025 - 28th January Evening Shift - No. 17)

Let $\mathrm{A}=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & -2 \\ 0 & 1\end{array}\right]$ and $\mathrm{P}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right], \theta>0$. If $\mathrm{B}=\mathrm{PAP}{ }^{\top}, \mathrm{C}=\mathrm{P}^{\top} \mathrm{B}^{10} \mathrm{P}$ and the sum of the diagonal elements of $C$ is $\frac{m}{n}$, where $\operatorname{gcd}(m, n)=1$, then $m+n$ is :
127
2049
258
65

Explanation

$$\begin{aligned} & \mathrm{P}=\left[\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array}\right] \\ & \because \mathrm{P}^{\mathrm{T}} \mathrm{P}=\mathrm{I} \\ & \mathrm{~B}=\mathrm{PAPT} \end{aligned}$$

Pre multiply by $\mathrm{P}^{\mathrm{T}}$ ( Given)

$$\mathrm{P}^{\mathrm{T}} \mathrm{~B}=\mathrm{P}^{\mathrm{T}} \mathrm{PA} \mathrm{P}^{\mathrm{T}}=\mathrm{AP}^{\mathrm{T}}$$

Now post multiply by P

$$\mathrm{P}^{\mathrm{T}} \mathrm{BP}=\mathrm{AP}^{\mathrm{T}} \mathrm{P}=\mathrm{A}$$

JEE Main 2025 (Online) 28th January Evening Shift Mathematics - Matrices and Determinants Question 12 English Explanation

$$\mathrm{A}^2=\mathrm{P}^{\mathrm{T}} \mathrm{~B}^2 \mathrm{P}$$

Similarly $A^{10}=P^T B^{10} P=C$

$$\begin{aligned} & A=\left[\begin{array}{cc} \frac{1}{\sqrt{2}} & -2 \\ 0 & 1 \end{array}\right] \text { (Given) } \\ & \Rightarrow A^2=\left[\begin{array}{cc} \frac{1}{2} & -\sqrt{2}-2 \\ 0 & 1 \end{array}\right] \end{aligned}$$

Similarly check $\mathrm{A}^3$ and so on since $\mathrm{C}=\mathrm{A}^{10}$

$\Rightarrow$ Sum of diagonal elements of C is $\left(\frac{1}{\sqrt{2}}\right)^{10}+1$

$$\begin{aligned} & =\frac{1}{32}+1=\frac{33}{32}=\frac{\mathrm{m}}{\mathrm{n}} \\ & \mathrm{~g} \mathrm{~cd}(\mathrm{~m}, \mathrm{n})=1 \text { (Given) } \\ & \Rightarrow \mathrm{m}+\mathrm{n}=65 \end{aligned}$$

Comments (0)

Advertisement