JEE MAIN - Mathematics (2025 - 28th January Evening Shift - No. 15)
If $\sum\limits_{r=1}^{13}\left\{\frac{1}{\sin \left(\frac{\pi}{4}+(r-1) \frac{\pi}{6}\right) \sin \left(\frac{\pi}{4}+\frac{r \pi}{6}\right)}\right\}=a \sqrt{3}+b, a, b \in Z$, then $a^2+b^2$ is equal to :
10
4
8
2
Explanation
$$\begin{aligned}
&\begin{aligned}
& \frac{1}{\sin \frac{\pi}{6}} \sum_{r=1}^{13} \frac{\sin \left[\left(\frac{\pi}{4}+\frac{\mathrm{r} \pi}{6}\right)-\left(\frac{\pi}{4}\right)-(\mathrm{r}-1) \frac{\pi}{6}\right]}{\sin \left(\frac{\pi}{4}+(\mathrm{r}-1) \frac{\pi}{6}\right) \sin \left(\frac{\pi}{4}+\frac{\mathrm{r} \pi}{6}\right)} \\
& \frac{1}{\sin \frac{\pi}{6}} \sum_{\mathrm{r}=1}^{13}\left(\cot \left(\frac{\pi}{4}+(\mathrm{r}-1) \frac{\pi}{6}\right)-\cot \left(\frac{\pi}{4}+\frac{\mathrm{r} \pi}{6}\right)\right) \\
& =2 \sqrt{3}-2=\alpha \sqrt{3}+\mathrm{b}
\end{aligned}\\
&\text { So } \mathrm{a}^2+\mathrm{b}^2=8
\end{aligned}$$
Comments (0)
