JEE MAIN - Mathematics (2025 - 24th January Morning Shift - No. 8)

Let the product of the focal distances of the point $\left(\sqrt{3}, \frac{1}{2}\right)$ on the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,(a>b)$, be $\frac{7}{4}$. Then the absolute difference of the eccentricities of two such ellipses is
$\frac{1-2 \sqrt{2}}{\sqrt{3}}$
$\frac{1-\sqrt{3}}{\sqrt{2}}$
$\frac{3-2 \sqrt{2}}{2 \sqrt{3}}$
$\frac{3-2 \sqrt{2}}{3 \sqrt{2}}$

Explanation

$$\begin{aligned} & \text { Product of focal distances }=\left(\mathrm{a}+\mathrm{ex}_1\right)\left(\mathrm{a}-\mathrm{ex}_1\right) \\ & =\mathrm{a}^2-\mathrm{e}^2 \mathrm{x}_1^2=\mathrm{a}^2-\mathrm{e}^2(3) \\ & =\mathrm{a}^2-3 \mathrm{e}^2=\frac{7}{4} \Rightarrow \mathrm{a}^2=\frac{7}{4}+3 \mathrm{e}^2 \\ & \Rightarrow 4 \mathrm{a}^2=7+12 \mathrm{e}^2 \\ & \&\left(\sqrt{3}, \frac{1}{2}\right) \text { lines on } \frac{\mathrm{x}^2}{\mathrm{a}^2}+\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1 \\ & \therefore \frac{3}{\mathrm{a}^2}+\frac{1}{4 \mathrm{~b}^2}=1 \\ & \frac{3}{\mathrm{a}^2}+\frac{1}{4\left(\mathrm{a}^2\right)\left(1-\mathrm{e}^2\right)}=1 \\ & 12\left(1-\mathrm{e}^2\right)+1=4 \mathrm{a}^2\left(1-\mathrm{e}^2\right) \\ & 13-12 \mathrm{e}^2=\left(7+12 \mathrm{e}^2\right)\left(1-\mathrm{e}^2\right) \\ & \Rightarrow 13-12 \mathrm{e}^2=7-7 \mathrm{e}^2+12 \mathrm{e}^2-12 \mathrm{e}^4 \\ & \Rightarrow 12 \mathrm{e}^4-17 \mathrm{e}^2+6=0 \\ & \therefore \mathrm{e}^2=\frac{17 \pm \sqrt{289-288}}{24}=\frac{17 \pm 1}{24}=\frac{3}{4} \& \frac{2}{3} \\ & \therefore \mathrm{e}=\frac{\sqrt{3}}{2} \& \sqrt{\frac{2}{3}} \\ & \therefore \text { difference }==\frac{\sqrt{3}}{2}-\sqrt{\frac{2}{3}}=\frac{3-2 \sqrt{2}}{2 \sqrt{3}} \end{aligned}$$

Comments (0)

Advertisement