JEE MAIN - Mathematics (2025 - 24th January Morning Shift - No. 12)

$A$ and $B$ alternately throw a pair of dice. A wins if he throws a sum of 5 before $B$ throws a sum of 8 , and $B$ wins if he throws a sum of 8 before $A$ throws a sum of 5 . The probability, that A wins if A makes the first throw, is
$\frac{8}{19}$
$\frac{9}{19}$
$\frac{8}{17}$
$\frac{9}{17}$

Explanation

$$\begin{aligned} & \mathrm{p}\left(\mathrm{~S}_5\right)=\frac{1}{9} \\ & \mathrm{p}\left(\mathrm{~S}_5\right)=\frac{5}{36} \\ & \text { required prob }=\frac{1}{9}+\frac{8}{9} \cdot \frac{31}{36} \cdot \frac{1}{9}+\left(\frac{8}{9} \cdot \frac{31}{36}\right)^2 \cdot \frac{1}{9}+\ldots \infty \\ & =\frac{\frac{1}{9}}{1-\frac{62}{81}}=\frac{9}{19} \end{aligned}$$

Comments (0)

Advertisement