JEE MAIN - Mathematics (2025 - 24th January Evening Shift - No. 9)

Suppose $A$ and $B$ are the coefficients of $30^{\text {th }}$ and $12^{\text {th }}$ terms respectively in the binomial expansion of $(1+x)^{2 \mathrm{n}-1}$. If $2 \mathrm{~A}=5 \mathrm{~B}$, then n is equal to:
20
19
22
21

Explanation

$$\begin{aligned} & A={ }^{2 n-1} C_{29} \quad B={ }^{2 n-1} C_{11} \\ & 2{ }^{2 n-1} C_{29}=5{ }^{2 n-1} C_{11} \\ & 2 \frac{(2 n-1)!}{29!(2 n-30)!}=5 \frac{(2 n-1)!}{(2 n-12)!11!} \\ & \frac{1}{29 \ldots 12 \cdot 5}=\frac{1}{(2 n-12)(2 n-13) \ldots(2 n-29) 2} \\ & \frac{1}{30 \cdot 29 \ldots 12}=\frac{1}{(2 n-12)(2 n-13) \ldots(2 n-29) 12} \\ & 2 n-12=30 \\ & n=21 \end{aligned}$$

Comments (0)

Advertisement