JEE MAIN - Mathematics (2025 - 24th January Evening Shift - No. 7)
If $\alpha>\beta>\gamma>0$, then the expression $\cot ^{-1}\left\{\beta+\frac{\left(1+\beta^2\right)}{(\alpha-\beta)}\right\}+\cot ^{-1}\left\{\gamma+\frac{\left(1+\gamma^2\right)}{(\beta-\gamma)}\right\}+\cot ^{-1}\left\{\alpha+\frac{\left(1+\alpha^2\right)}{(\gamma-\alpha)}\right\}$ is equal to :
$3 \pi$
$\frac{\pi}{2}-(\alpha+\beta+\gamma)$
$\pi$
0
Explanation
$$\begin{aligned}
& \Rightarrow \cot ^{-1}\left(\frac{\alpha \beta+1}{\alpha-\beta}\right)+\cot ^{-1}\left(\frac{\beta \gamma+1}{\beta-\gamma}\right)+\cot ^{-1}\left(\frac{\alpha \gamma+1}{\gamma-\alpha}\right) \\
& \Rightarrow \tan ^{-1}\left(\frac{\alpha-\beta}{1+\alpha \beta}\right)+\tan ^{-1}\left(\frac{\beta-\gamma}{1+\beta \gamma}\right)+\pi+\tan ^{-1}\left(\frac{\gamma-\alpha}{1+\gamma \alpha}\right) \\
& \Rightarrow\left(\tan ^{-1} \alpha-\tan ^{-1} \beta\right)+\left(\tan ^{-1} \beta-\tan ^{-1} \gamma\right)+\left(\pi+\tan ^{-1} \gamma-\tan ^{-1} \alpha\right) \\
& \Rightarrow \pi
\end{aligned}$$
Comments (0)
