JEE MAIN - Mathematics (2025 - 24th January Evening Shift - No. 6)

For some $a, b,$ let $f(x)=\left|\begin{array}{ccc}\mathrm{a}+\frac{\sin x}{x} & 1 & \mathrm{~b} \\ \mathrm{a} & 1+\frac{\sin x}{x} & \mathrm{~b} \\ \mathrm{a} & 1 & \mathrm{~b}+\frac{\sin x}{x}\end{array}\right|, x \neq 0, \lim \limits_{x \rightarrow 0} f(x)=\lambda+\mu \mathrm{a}+\nu \mathrm{b}.$ Then $(\lambda+\mu+v)^2$ is equal to :
25
16
9
36

Explanation

$$\begin{aligned} & \lim _{x \rightarrow 0} f(x)=\left|\begin{array}{ccc} a+1 & 1 & b \\ a & 1+1 & b \\ a & 1 & b+1 \end{array}\right| \\ & =(a+1)(2(b+1)-b)+1(a b-a(b+1))+b a \\ & =(a+1)(b+2)-a+a b \\ & =b+a+2=\lambda+\mu a+v b \\ & \lambda=2, \mu=1, v=1 \Rightarrow(\lambda+\mu+v)^2=16 \end{aligned}$$

Comments (0)

Advertisement