JEE MAIN - Mathematics (2025 - 24th January Evening Shift - No. 4)
Explanation
$$\begin{aligned} & \mathrm{A}: \log _{2 \pi}|\sin \mathrm{x}|+\log _{2 \pi}|\cos \mathrm{x}|=2 \\ & \Rightarrow \log _{2 \pi}(|\sin \mathrm{x} \cdot \cos \mathrm{x}|)=2 \\ & \Rightarrow|\sin 2 \mathrm{x}|=\frac{8}{\pi^2} \end{aligned}$$
Number of solution 4
B : let $\sqrt{\mathrm{x}}=\mathrm{t}<2$
Then $\sqrt{\mathrm{x}}(\sqrt{\mathrm{x}}-4)+3(\sqrt{\mathrm{x}}-2)+6=0$
$$\begin{aligned} & \Rightarrow \mathrm{t}^2-4 \mathrm{t}+3 \mathrm{t}-6+6=0 \\ & \Rightarrow \mathrm{t}^2-\mathrm{t}=0, \mathrm{t}=0, \mathrm{t}=1 \\ & \mathrm{x}=0, \mathrm{x}=1 \end{aligned}$$
again let $\sqrt{x}=t>2$
then $\mathrm{t}^2-4 \mathrm{t}-3 \mathrm{t}+6+6=0$
$$\begin{aligned} & \Rightarrow t^2-7 \mathrm{t}+12=0 \\ & \Rightarrow \mathrm{t}=3,4 \\ & \mathrm{x}=9,16 \end{aligned}$$
Total number of solutions
$$\mathrm{n}(\mathrm{~A} \cup \mathrm{~B})=4+4=8$$
Comments (0)
