JEE MAIN - Mathematics (2025 - 24th January Evening Shift - No. 1)
In an arithmetic progression, if $\mathrm{S}_{40}=1030$ and $\mathrm{S}_{12}=57$, then $\mathrm{S}_{30}-\mathrm{S}_{10}$ is equal to :
525
505
510
515
Explanation
Let a & d are first term and common diff of an AP.
$$\begin{aligned} & \mathrm{S}_{40}=\frac{40}{2}[2 \mathrm{a}+39 \mathrm{~d}]=1030 \quad\text{..... (1)}\\ & \mathrm{~S}_{12}=\frac{12}{2}[2 \mathrm{a}+11 \mathrm{~d}]=57 \quad\text{..... (2)} \end{aligned}$$
by (1) & (2)
$$\begin{aligned} & \mathrm{a}=-\frac{7}{2} \quad \mathrm{~d}=\frac{3}{2} \\ & \therefore \mathrm{~S}_{30}-\mathrm{S}_{10}=\frac{30}{2}[2 \mathrm{a}+29 \mathrm{~d}]-\frac{10}{2}[2 \mathrm{a}+9 \mathrm{~d}] \\ & =20 \mathrm{a}-390 \mathrm{~d} \\ & =515 \end{aligned}$$
Comments (0)
