JEE MAIN - Mathematics (2025 - 23rd January Morning Shift - No. 14)

Let $\mathrm{I}(x)=\int \frac{d x}{(x-11)^{\frac{11}{13}}(x+15)^{\frac{15}{13}}}$. If $\mathrm{I}(37)-\mathrm{I}(24)=\frac{1}{4}\left(\frac{1}{\mathrm{~b}^{\frac{1}{13}}}-\frac{1}{\mathrm{c}^{\frac{1}{13}}}\right), \mathrm{b}, \mathrm{c} \in \mathcal{N}$, then $3(\mathrm{~b}+\mathrm{c})$ is equal to
39
22
40
26

Explanation

$$\begin{aligned} & I(x)=\int \frac{d x}{(x-11)^{\frac{11}{13}}(x+15)^{\frac{15}{13}}} \\ & \text { Put } \frac{x-11}{x+15}=t \Rightarrow \frac{26}{(x+5)^2} d x=d t \\ & I(x)=\frac{1}{26} \int \frac{d t}{t^{11 / 13}}=\frac{1}{26} \cdot \frac{t^{2 / 13}}{2 / 13} \end{aligned}$$

$$\begin{aligned} & \mathrm{I}(\mathrm{x})=\frac{1}{4}\left(\frac{\mathrm{x}-11}{\mathrm{x}+15}\right)^{2 / 13}+\mathrm{C} \\ & \mathrm{I}(37)-\mathrm{I}(24)=\frac{1}{4}\left(\frac{26}{52}\right)^{2 / 13}-\frac{1}{4}\left(\frac{13}{39}\right)^{2 / 13} \\ & =\frac{1}{4}\left(\frac{1}{2^{2 / 13}}-\frac{1}{3^{2 / 13}}\right) \\ & =\frac{1}{4}\left(\frac{1}{4^{1 / 13}}-\frac{1}{9^{1 / 13}}\right) \\ & \therefore \mathrm{b}=4, \mathrm{c}=9 \\ & 3(\mathrm{~b}+\mathrm{c})=39 \end{aligned}$$

Comments (0)

Advertisement