JEE MAIN - Mathematics (2025 - 23rd January Morning Shift - No. 11)
The value of $\int_{e^2}^{e^4} \frac{1}{x}\left(\frac{e^{\left(\left(\log _e x\right)^2+1\right)^{-1}}}{e^{\left(\left(\log _e x\right)^2+1\right)^{-1}}+e^{\left(\left(6-\log _e x\right)^2+1\right)^{-1}}}\right) d x$ is
1
$\log_e2$
$e^2$
2
Explanation
$$\begin{aligned}
&\text { Let } \ln \mathrm{x}=\mathrm{t} \Rightarrow \frac{\mathrm{dx}}{\mathrm{x}}=\mathrm{dt}\\
&\begin{aligned}
& I=\int_2^4 \frac{e^{\frac{1}{1+t^2}}}{e^{\frac{1}{1+t^2}}+e^{\frac{1}{1+(6-t)^2}}} d t \\
& I=\int_2^4 \frac{\frac{1}{e^{1+(6-t)^2}}}{\frac{1}{e^{1+(6-t)^2}}+e^{\frac{1}{1+t^2}}} d t \\
& 2 I=\int_2^4 d t=(t)_2^4=4-2=2 \\
& I=1
\end{aligned}
\end{aligned}$$
Comments (0)
