JEE MAIN - Mathematics (2025 - 23rd January Morning Shift - No. 11)

The value of $\int_{e^2}^{e^4} \frac{1}{x}\left(\frac{e^{\left(\left(\log _e x\right)^2+1\right)^{-1}}}{e^{\left(\left(\log _e x\right)^2+1\right)^{-1}}+e^{\left(\left(6-\log _e x\right)^2+1\right)^{-1}}}\right) d x$ is
1
$\log_e2$
$e^2$
2

Explanation

$$\begin{aligned} &\text { Let } \ln \mathrm{x}=\mathrm{t} \Rightarrow \frac{\mathrm{dx}}{\mathrm{x}}=\mathrm{dt}\\ &\begin{aligned} & I=\int_2^4 \frac{e^{\frac{1}{1+t^2}}}{e^{\frac{1}{1+t^2}}+e^{\frac{1}{1+(6-t)^2}}} d t \\ & I=\int_2^4 \frac{\frac{1}{e^{1+(6-t)^2}}}{\frac{1}{e^{1+(6-t)^2}}+e^{\frac{1}{1+t^2}}} d t \\ & 2 I=\int_2^4 d t=(t)_2^4=4-2=2 \\ & I=1 \end{aligned} \end{aligned}$$

Comments (0)

Advertisement