JEE MAIN - Mathematics (2025 - 22nd January Morning Shift - No. 6)
Let the triangle PQR be the image of the triangle with vertices $(1,3),(3,1)$ and $(2,4)$ in the line $x+2 y=2$. If the centroid of $\triangle \mathrm{PQR}$ is the point $(\alpha, \beta)$, then $15(\alpha-\beta)$ is equal to :
21
19
22
24
Explanation
Let ' $G$ ' be the centroid of $\Delta$ formed by $(1,3)(3,1)$ \& $(2,4)$
$$ \mathrm{G} \cong\left(2, \frac{8}{3}\right) $$
Image of G w.r.t. $x+2 y-2=0$
$$ \begin{aligned} & \frac{\alpha-2}{1}=\frac{\beta-\frac{8}{3}}{2}=-2 \frac{\left(2+\frac{16}{3}-2\right)}{1+4} \\ & =\frac{-2}{5}\left(\frac{16}{3}\right) \\ & \Rightarrow \alpha=\frac{-32}{15}+2=\frac{-2}{15}, \beta=\frac{-32 \times 2}{15}+\frac{8}{3}=\frac{-24}{15} \\ & 15(\alpha-\beta)=-2+24=22 \end{aligned} $$
Comments (0)
