JEE MAIN - Mathematics (2025 - 22nd January Morning Shift - No. 4)

Let $\mathrm{L}_1: \frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\mathrm{L}_2: \frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}$ be two lines. Then which of the following points lies on the line of the shortest distance between $\mathrm{L}_1$ and $\mathrm{L}_2$ ?
$\left(\frac{14}{3},-3, \frac{22}{3}\right)$
$\left(2,3, \frac{1}{3}\right)$
$\left(\frac{8}{3},-1, \frac{1}{3}\right)$
$\left(-\frac{5}{3},-7,1\right)$

Explanation

$\begin{aligned} & L_1: \frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4} \\\\ & L_2: \frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}\end{aligned}$

JEE Main 2025 (Online) 22nd January Morning Shift Mathematics - 3D Geometry Question 12 English Explanation

$$ \begin{aligned} & P(2 \lambda+1,3 \lambda+2,4 \lambda+3) \\ & Q(3 \mu+2,4 \mu+4,5 \mu+5) \end{aligned} $$

Dr's of $P Q<2 \lambda-3 \mu-1,3 \lambda-4 \mu-2$,

$$ \begin{aligned} & 4 \lambda-5 \mu-2> \\ & P Q=\left|\begin{array}{lll} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{array}\right|=-\hat{i}+2 \hat{j}-\hat{k} \end{aligned} $$

$$ \begin{aligned} & \Rightarrow \quad \frac{2 \lambda-3 \mu-1}{-1}=\frac{3 \lambda-4 \mu-2}{2}=\frac{4 \lambda-5 \mu-2}{-1} \\ & \Rightarrow \quad \lambda=\frac{1}{3} \mu=\frac{-1}{6} \\ & \Rightarrow \quad P\left(\frac{5}{3}, 3, \frac{13}{3}\right) \quad Q\left(\frac{3}{2}, \frac{10}{3}, \frac{25}{6}\right) \end{aligned} $$

Dr's $P Q\langle 1,-2,1\rangle$

$\therefore$ Line

$$ \frac{y-\frac{5}{3}}{1}=\frac{y-3}{-2}=\frac{y-\frac{13}{3}}{1} $$

Comments (0)

Advertisement