JEE MAIN - Mathematics (2025 - 22nd January Morning Shift - No. 20)
If $\sum_\limits{r=1}^n T_r=\frac{(2 n-1)(2 n+1)(2 n+3)(2 n+5)}{64}$, then $\lim _\limits{n \rightarrow \infty} \sum_\limits{r=1}^n\left(\frac{1}{T_r}\right)$ is equal to :
$\frac{2}{3}$
$\frac{1}{3}$
1
0
Explanation
$\begin{aligned} & T_n=S_n-S_{n-1} \\\\ & \Rightarrow T_n=\frac{1}{8}(2 \mathrm{n}-1)(2 \mathrm{n}+1)(2 \mathrm{n}+3) \\\\ & \Rightarrow \frac{1}{T_{\mathrm{n}}}=\frac{8}{(2 \mathrm{n}-1)(2 \mathrm{n}+1)(2 \mathrm{n}+3)} \\\\ & \lim _{\mathrm{n} \rightarrow \infty} \sum_{\mathrm{r}=1}^{\mathrm{n}} \frac{1}{T_{\mathrm{r}}}=\lim _{\mathrm{n} \rightarrow \infty} 8 \sum_{\mathrm{r}=1}^{\mathrm{n}} \frac{1}{(2 \mathrm{n}-1)(2 \mathrm{n}+1)(2 \mathrm{n}+3)} \\\\ & =\lim _{\mathrm{n} \rightarrow \infty} \frac{8}{4} \sum\left(\frac{1}{(2 \mathrm{n}-1)(2 \mathrm{n}+1)}-\frac{1}{(2 \mathrm{n}+1)(2 \mathrm{n}+3)}\right) \\\\ & =\lim _{\mathrm{n} \rightarrow \infty} 2\left[\left(\frac{1}{1.3}-\frac{1}{3.5}\right)+\left(\frac{1}{3.5}-\frac{1}{5.7}\right)+\ldots\right] \\\\ & =\frac{2}{3}\end{aligned}$
Comments (0)
