JEE MAIN - Mathematics (2025 - 22nd January Morning Shift - No. 2)
Let the foci of a hyperbola be $(1,14)$ and $(1,-12)$. If it passes through the point $(1,6)$, then the length of its latus-rectum is :
$\frac{25}{6}$
$\frac{144}{5}$
$\frac{288}{5}$
$\frac{24}{5}$
Explanation
$\begin{aligned} & \mathrm{be}=13, \mathrm{~b}=5 \\ & \mathrm{a}^2=\mathrm{b}^2\left(\mathrm{e}^2-1\right) \\ & =\mathrm{b}^2 \mathrm{e}^2-\mathrm{b}^2 \\ & =169-25=144 \\ & \ell(\mathrm{LR})=\frac{2 \mathrm{a}^2}{\mathrm{~b}}=\frac{2 \times 144}{5}=\frac{288}{5}\end{aligned}$
Comments (0)
