JEE MAIN - Mathematics (2025 - 22nd January Morning Shift - No. 14)
Explanation
First, let us denote the first term of the G.P. by $a_1 = A$ and the common ratio (which is $> 1$, since the G.P. is increasing) by $r$. Then the terms are:
$ a_1 = A,\quad a_2 = Ar,\quad a_3 = Ar^2,\quad a_4 = Ar^3,\quad a_5 = Ar^4,\quad a_6 = Ar^5,\;\dots $
We are given:
$a_1 \cdot a_5 = 28$, i.e.
$ A \cdot (A r^4) \;=\; A^2 r^4 \;=\; 28. \quad (1) $
$a_2 + a_4 = 29$, i.e.
$ Ar \;+\; A r^3 \;=\; A(r + r^3) \;=\; 29. \quad (2) $
We want to find $a_6 = A r^5$.
1. Solve for $r$
From $\text{(1)}$:
$ A^2 r^4 = 28 \quad\Longrightarrow\quad A^2 = \frac{28}{r^4}. $
From $\text{(2)}$:
$ A\,\bigl(r + r^3\bigr) = 29 \quad\Longrightarrow\quad A = \frac{29}{r + r^3}. $
Plug $A$ from $\text{(2)}$ into $\text{(1)}$. After some algebra (or by a systematic approach), one finds that
$ r^2 = 28 \quad\Longrightarrow\quad r = \sqrt{28} \;=\; 2\sqrt{7} $
(since $r>1$, we take the positive root).
2. Solve for $A$
From (2), using $r = 2\sqrt{7}$:
$ r + r^3 = 2\sqrt{7} + (2\sqrt{7})^3 = 2\sqrt{7} + 56\sqrt{7} = 58\sqrt{7}. $
Hence,
$ A = \frac{29}{\,58\sqrt{7}\,} = \frac{1}{2\sqrt{7}}. $
3. Find $a_6$
$ a_6 = A\,r^5 = \frac{1}{2\sqrt{7}}\;\times\;(2\sqrt{7})^5. $
Compute $(2\sqrt{7})^5$. First, $(2\sqrt{7})^2 = 28$; thus
$ (2\sqrt{7})^5 = (2\sqrt{7})^4 \cdot (2\sqrt{7}) = 784 \times (2\sqrt{7}) = 1568\sqrt{7}. $
Therefore,
$ a_6 = \frac{1}{2\sqrt{7}} \cdot 1568\sqrt{7} = \frac{1568}{2}\;\;(\text{since }\sqrt{7} \text{ cancels}) = 784. $
Answer: $a_6 = 784$.
Hence, the correct option is Option B.
Comments (0)
