JEE MAIN - Mathematics (2025 - 22nd January Morning Shift - No. 11)
A coin is tossed three times. Let $X$ denote the number of times a tail follows a head. If $\mu$ and $\sigma^2$ denote the mean and variance of $X$, then the value of $64\left(\mu+\sigma^2\right)$ is:
64
32
51
48
Explanation
| Outcome | $x_i$ | $p_i$ |
|---|---|---|
| HHH | 0 | $\frac{1}{8}$ |
| TTT | 0 | $\frac{1}{8}$ |
| HHT | 1 | $\frac{1}{8}$ |
| HTH | 1 | $\frac{1}{8}$ |
| THH | 0 | $\frac{1}{8}$ |
| TTH | 0 | $\frac{1}{8}$ |
| THT | 1 | $\frac{1}{8}$ |
| HTT | 1 | $\frac{1}{8}$ |
Comments (0)


