JEE MAIN - Mathematics (2024 - 9th April Evening Shift - No. 19)

The sum of the coefficient of $$x^{2 / 3}$$ and $$x^{-2 / 5}$$ in the binomial expansion of $$\left(x^{2 / 3}+\frac{1}{2} x^{-2 / 5}\right)^9$$ is
19/4
69/16
63/16
21/4

Explanation

$$ \begin{aligned} & T_{r+1}={ }^9 C_r\left(\frac{x^{-2 / 5}}{2}\right)^r\left(x^{2 / 3}\right)^{9-r} \\ & ={ }^9 C_r \frac{1}{2^r} x^{\frac{2}{3}(9-r)+\left(\frac{-2 r}{5}\right)} \\ & ={ }^9 C_r \cdot \frac{1}{2^r} \cdot x^{6-\frac{16 r}{15}} \end{aligned} $$

For coefficient of $$x^{2 / 3}$$

$$\begin{aligned} & \Rightarrow 6-\frac{16 r}{15}=\frac{2}{3} \\ & \Rightarrow 90-16 r=10 \\ & \Rightarrow r=5 \end{aligned}$$

For coefficient of $$x^{-2 / 5}$$

$$\begin{aligned} & \Rightarrow 6-\frac{16 r}{15}=\frac{-2}{5}\\ & \Rightarrow 90-16 r=-6 \\ & \Rightarrow r=6 \end{aligned}$$

Sum of coefficient of $$x^{2 / 3}$$ & $$x^{-2 / 5}$$

$$\begin{aligned} & ={ }^9 C_5 \cdot \frac{1}{2^5}+{ }^9 C_6 \cdot \frac{1}{2^6} \\ & =\frac{9!}{5!4!}\left(\frac{1}{2^5}\right)+\frac{9!}{6!3!}\left(\frac{1}{2^6}\right)=\frac{21}{4} \end{aligned}$$

Comments (0)

Advertisement