JEE MAIN - Mathematics (2024 - 9th April Evening Shift - No. 13)

If the variance of the frequency distribution

$$x$$ $$c$$ $$2c$$ $$3c$$ $$4c$$ $$5c$$ $$6c$$
$$f$$ 2 1 1 1 1 1

is 160, then the value of $$c\in N$$ is

5
8
6
7

Explanation

$$x_i$$ $$f(x_i)$$ $$x(f(x)$$ $$x^2f(x)$$
C 2 2C 2C$$^2$$
2C 1 2C 4C$$^2$$
3C 1 3C 9C$$^2$$
4C 1 4C 16C$$^2$$
5C 1 5C 25C$$^2$$
6C 1 6C 36C$$^2$$

$$\begin{aligned} & \sigma^2=E\left(x^2\right)-[E(x)], \sum f\left(x_i\right)=7 \\ & E(x)=\sum x f(x)=22 C \\ & E\left(x^2\right)=\sum x^2 f(x)=92 C^2 \end{aligned}$$

$$\begin{aligned} & \sigma^2=160=\frac{92 C^2}{7}-\left(\frac{22 C}{7}\right)^2 \\ & \Rightarrow C= \pm 7 \text { but } C \in N \\ & \Rightarrow C=7 \end{aligned}$$

Comments (0)

Advertisement