JEE MAIN - Mathematics (2024 - 8th April Morning Shift - No. 5)

Let the circles $$C_1:(x-\alpha)^2+(y-\beta)^2=r_1^2$$ and $$C_2:(x-8)^2+\left(y-\frac{15}{2}\right)^2=r_2^2$$ touch each other externally at the point $$(6,6)$$. If the point $$(6,6)$$ divides the line segment joining the centres of the circles $$C_1$$ and $$C_2$$ internally in the ratio $$2: 1$$, then $$(\alpha+\beta)+4\left(r_1^2+r_2^2\right)$$ equals
130
110
145
125

Explanation

$$\begin{aligned} & C_1 \rightarrow(x-\alpha)^2+(y-\beta)^2=r_1^2 \\ & C_2 \rightarrow(x-8)^2+\left(y-\frac{15}{2}\right)^2=r_2^2 \end{aligned}$$

Point $$P$$ divide the line segment internally $$C_1 C_2$$ in the ratio 2 : 1

JEE Main 2024 (Online) 8th April Morning Shift Mathematics - Circle Question 12 English Explanation

$$\begin{aligned} & \frac{\alpha \times 1+8 \times 2}{1+2}=6, \alpha=2 \\ & \frac{\beta \times 1+\frac{15}{\alpha} \times 2}{1+2}=6, \beta=3 \\ & r_1=\sqrt{(6-2)^2+(6-3)^2}=\sqrt{25}=5 \\ & r_2=\sqrt{(8-6)^2+\left(\frac{15}{\alpha}-6\right)^2}=\frac{5}{2} \\ & \alpha+\beta+4\left(r_1^2+r_2^2\right)=2+3+4\left(5^2+\left(\frac{5}{2}\right)^2\right) \\ & =5+4\left(\frac{125}{4}\right) \\ & =130 \\ \end{aligned}$$

Comments (0)

Advertisement