JEE MAIN - Mathematics (2024 - 8th April Morning Shift - No. 30)
The value of $$\lim _\limits{x \rightarrow 0} 2\left(\frac{1-\cos x \sqrt{\cos 2 x} \sqrt[3]{\cos 3 x} \ldots \ldots . \sqrt[10]{\cos 10 x}}{x^2}\right)$$ is __________.
Answer
55
Explanation
$$\mathop {\lim }\limits_{x \to 0} 2\left( {{{1 - \cos x{{(\cos 2x)}^{{1 \over 2}}}{{(\cos 3x)}^{{1 \over 3}}}\,...\,{{(\cos 10x)}^{{1 \over {10}}}}} \over {{x^2}}}} \right)$$ $$\left(\frac{0}{0} \text { form }\right)$$
Using L' hospital
$$2 \lim _\limits{x \rightarrow 0} \frac{\sin x(\cos 2 x)^{\frac{1}{2}} \ldots(\cos 10 x)^{\frac{1}{10}} \ldots(\sin 2 x)(\cos x)(\cos 3 x)^{\frac{1}{3}}+\ldots}{2 x}$$
$$\begin{aligned} \Rightarrow & \lim _{x \rightarrow 0}\left(\frac{\sin x}{x}+\frac{\sin 2 x}{x}+\ldots+\frac{\sin 10 x}{x}\right) \\ \quad & =1+2+\ldots+10=55 \end{aligned}$$
Comments (0)
