JEE MAIN - Mathematics (2024 - 8th April Morning Shift - No. 3)

Let $$f(x)=4 \cos ^3 x+3 \sqrt{3} \cos ^2 x-10$$. The number of points of local maxima of $$f$$ in interval $$(0,2 \pi)$$ is
1
3
4
2

Explanation

$$\begin{aligned} & f(x)=4 \cos ^3 x+3 \sqrt{3} \cos ^2 x-10 \\ & f^{\prime}(x)=12 \cos ^2 x \cdot(-\sin x)+6 \sqrt{3} \cos x \cdot(-\sin x)=0 \\ & =-6 \sqrt{3} \cos x \cdot \sin x\left(1+\frac{2}{\sqrt{3}} \cos x\right)=0 \\ & \cos x=0, \sin x=0, \cos x=\frac{-\sqrt{3}}{2} \end{aligned}$$

Sign of $$f(x)$$

JEE Main 2024 (Online) 8th April Morning Shift Mathematics - Application of Derivatives Question 13 English Explanation

$$\therefore \text { Maxima at } \frac{5 \pi}{6}, \frac{7 \pi}{6}$$

Comments (0)

Advertisement