JEE MAIN - Mathematics (2024 - 8th April Evening Shift - No. 15)
The sum of all possible values of $$\theta \in[-\pi, 2 \pi]$$, for which $$\frac{1+i \cos \theta}{1-2 i \cos \theta}$$ is purely imaginary, is equal to :
$$4 \pi$$
$$3 \pi$$
$$2 \pi$$
$$5 \pi$$
Explanation
$$\frac{1+i \cos \theta}{1-2 i \cos \theta}$$ is purely imaginary
$$n=\frac{1+i \cos \theta}{1-2 i \cos \theta} \times \frac{1+2 i \cos \theta}{1+2 i \cos \theta}=\frac{1+3 i \cos \theta-2 \cos ^2 \theta}{1+4 \cos ^2 \theta}$$
$$n=\frac{1-2 \cos ^2 \theta}{1+4 \cos ^2 \theta}+i\left(\frac{3 \cos \theta}{1+4 \cos ^2 \theta}\right)$$
$$n$$ is purely imaginary
$$\Rightarrow \frac{1-2 \cos ^2 \theta}{1+4 \cos ^2 \theta}=0$$
$$\Rightarrow \cos ^2 \theta=\frac{1}{2}$$
$$\Rightarrow \cos \theta= \pm \frac{1}{\sqrt{2}}$$
$$\theta$$ can be $$\frac{\pi}{4}, \frac{-\pi}{4}, \frac{3 \pi}{4}, \frac{-3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$$
Sum of all possible values of $$\theta=3 \pi$$
Comments (0)
