JEE MAIN - Mathematics (2024 - 6th April Morning Shift - No. 9)
Explanation
Given two lines are represented as:
$ \frac{x-3}{2} = \frac{y+15}{-7} = \frac{z-9}{5} $
and
$ \frac{x+1}{2} = \frac{y-1}{1} = \frac{z-9}{-3} $
The formula for the shortest distance between two lines is:
$ d = \frac{|\left(\vec{a}_2 - \vec{a}_1\right) \cdot \left(\vec{b}_1 \times \vec{b}_2\right)|}{|\vec{b}_1 \times \vec{b}_2|} $
From the given lines:
$ \vec{a}_1 = (3, -15, 9) $
$ \vec{a}_2 = (-1, 1, 9) $
$ \vec{b}_1 = (2, -7, 5) $
$ \vec{b}_2 = (2, 1, -3) $
Calculate the difference:
$ \vec{a}_2 - \vec{a}_1 = (-1-3, 1+15, 9-9) = (-4, 16, 0) $
Next, compute the cross product:
$ \vec{b}_1 \times \vec{b}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -7 & 5 \\ 2 & 1 & -3 \end{vmatrix} = (16\hat{i} + 16\hat{j} + 16\hat{k}) $
The magnitude of the cross product is:
$ |\vec{b}_1 \times \vec{b}_2| = |(16\hat{i} + 16\hat{j} + 16\hat{k})| = 16\sqrt{3} $
Calculate the dot product:
$ (\vec{a}_2 - \vec{a}_1) \cdot (\vec{b}_1 \times \vec{b}_2) = (-4\hat{i} + 16\hat{j} + 0\hat{k}) \cdot (16\hat{i} + 16\hat{j} + 16\hat{k}) = -64 + 256 + 0 = 192 $
Finally, find the shortest distance:
$ d = \frac{|192|}{16\sqrt{3}} = \frac{192}{16\sqrt{3}} = 4\sqrt{3} $
Thus, the shortest distance is:
$ \boxed{4 \sqrt{3}} $
Comments (0)
