JEE MAIN - Mathematics (2024 - 6th April Morning Shift - No. 8)
Explanation
Given the function:
$ f(x)=\left\{\begin{array}{ll} x^3 \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0 \end{array}\right. $
we need to find its second derivative at specific points.
First, let’s compute the first derivative $ f^{\prime}(x) $:
$ f^{\prime}(x) = 3x^2 \sin \left( \frac{1}{x} \right) - x \cos \left( \frac{1}{x} \right) $
Next, the second derivative $ f^{\prime \prime}(x) $ is:
$ f^{\prime \prime}(x) = 6x \sin \left(\frac{1}{x}\right) - 3x \cos \left(\frac{1}{x}\right) - \cos \left(\frac{1}{x}\right) - \frac{1}{x} \sin \left(\frac{1}{x}\right) $
Therefore, evaluating the second derivative at $ x = \frac{2}{\pi} $:
$ f^{\prime \prime} \left(\frac{2}{\pi}\right) = 6 \left( \frac{2}{\pi} \right) \sin \left(\frac{\pi}{2}\right) - 3 \left( \frac{2}{\pi} \right) \cos \left(\frac{\pi}{2}\right) - \cos \left( \frac{\pi}{2} \right) - \frac{\pi}{2} \sin \left( \frac{\pi}{2} \right) $
Since $\sin(\frac{\pi}{2}) = 1$ and $\cos(\frac{\pi}{2}) = 0$, this simplifies to:
$ f^{\prime \prime} \left( \frac{2}{\pi} \right) = \frac{12}{\pi} - \frac{\pi}{2} = \frac{24 - \pi^2}{2\pi} $
Finally, note that $ f^{\prime}(0) $ is not defined, as it involves terms like $\frac{1}{x}$ when $ x = 0 $.
Comments (0)
