JEE MAIN - Mathematics (2024 - 6th April Morning Shift - No. 3)
Let $$A=\{n \in[100,700] \cap \mathrm{N}: n$$ is neither a multiple of 3 nor a multiple of 4$$\}$$. Then the number of elements in $$A$$ is
300
310
290
280
Explanation
$$n \in[100,700]$$
$$n(A)=$$ Total $$-$$ (multiple of $$3$$ + multiple of 4) + (multiple of 12)
Total $$=601$$
Multiple of $$3=102,105, \ldots, 699$$
$$\begin{aligned} & n=699=102+(n-1) 3 \\ & \Rightarrow n=200 \end{aligned}$$
Multiple of $$4=100,104 \ldots ., 700$$
$$\begin{aligned} & n=700=100+(n-1) 4 \\ & \frac{600}{4}+1=n \\ & \Rightarrow n=151 \end{aligned}$$
Multiple of $$12=108,120 \ldots .696$$
$$\begin{aligned} & n=696=108+(n-1) 12 \\ & n=50 \\ & \therefore n(A)=601-(200+151)+50 \\ & =300 \end{aligned}$$
Comments (0)
