JEE MAIN - Mathematics (2024 - 6th April Morning Shift - No. 27)
Explanation
For $ n \in \mathbb{N} $, if $ \cot^{-1} 3 + \cot^{-1} 4 + \cot^{-1} 5 + \cot^{-1} n = \frac{\pi}{4} $, then $ n $ is equal to .
Given the equation:
$ \cot^{-1} 3 + \cot^{-1} 4 + \cot^{-1} 5 + \cot^{-1}(n) = \frac{\pi}{4} $
we can use the identity for the sum of inverse cotangents. Starting with the first two terms:
$ \cot^{-1} 3 + \cot^{-1} 4 = \cot^{-1}\left(\frac{3 \times 4 - 1}{3 + 4}\right) = \cot^{-1}\left(\frac{11}{7}\right) $
Now, adding the third term:
$ \cot^{-1}\left(\frac{11}{7}\right) + \cot^{-1}(5) $
we apply the identity again:
$ \cot^{-1}\left(\frac{11}{7}\right) + \cot^{-1}\left(\frac{n \times 5 - 1}{5 + n}\right) = \frac{\pi}{4} $
Rewriting this to isolate the sum of the terms, we proceed as follows:
$ \cot^{-1}\left( \frac{\left(\frac{11}{7} \times \frac{5n-1}{5+n} - 1\right)}{\left(\frac{11}{7} + \frac{5n-1}{5+n} \right)} \right) = \frac{\pi}{4} $
This simplifies to:
$ \frac{11}{7} \left(\frac{5n-1}{5+n}\right) - 1 = \frac{11}{7} + \frac{5n-1}{5+n} $
Solving the equation:
$ \frac{55n - 11}{5 + n} - 1 = \frac{11}{7} + \frac{5n - 1}{5 + n} $
Further simplification yields:
$ 55n - 11 - 35 - 7n = 55 + 11n + 35n - 7 $
Bringing the terms together, we get:
$ 48n - 46 = 48 $
Therefore:
$ 2n = 94 $
So finally:
$ n = 47 $
Comments (0)
