JEE MAIN - Mathematics (2024 - 6th April Morning Shift - No. 19)

The interval in which the function $$f(x)=x^x, x>0$$, is strictly increasing is
$$(0, \infty)$$
$$\left(0, \frac{1}{e}\right]$$
$$\left[\frac{1}{e^2}, 1\right)$$
$$\left[\frac{1}{e}, \infty\right)$$

Explanation

$$\begin{aligned} & f(x)=x^x \\ & f(x)=x^x(\log x+1) \\ & f(x) \geq 0 \\ & \Rightarrow 1+\log x \geq 0 \\ & \Rightarrow \log x \geq-1 \\ & \Rightarrow x \geq e^{-1} \\ & \therefore x \in\left[\frac{1}{e^{\prime}}, \infty\right) \end{aligned}$$

Comments (0)

Advertisement