JEE MAIN - Mathematics (2024 - 6th April Morning Shift - No. 1)

A circle is inscribed in an equilateral triangle of side of length 12. If the area and perimeter of any square inscribed in this circle are $$m$$ and $$n$$, respectively, then $$m+n^2$$ is equal to
408
414
312
396

Explanation

JEE Main 2024 (Online) 6th April Morning Shift Mathematics - Circle Question 7 English Explanation

Inradius of $$\triangle A B C=r=\frac{\Delta}{s}=\frac{\frac{\sqrt{3}}{4} \times(12)^2}{18}$$

$$r=2 \sqrt{3}$$

Side length of square is $$a$$, then $$a^2=2 r^2$$

$$\Rightarrow a^2=24$$

Area of square, $$m=24$$

Perimeter of square, $$n=4 \sqrt{24}$$

$$\begin{aligned} & \Rightarrow m+n^2=24+384 \\ & =408 \end{aligned}$$

Comments (0)

Advertisement