JEE MAIN - Mathematics (2024 - 6th April Evening Shift - No. 4)

Let $$f(x)=\frac{1}{7-\sin 5 x}$$ be a function defined on $$\mathbf{R}$$. Then the range of the function $$f(x)$$ is equal to :
$$\left[\frac{1}{8}, \frac{1}{5}\right]$$
$$\left[\frac{1}{7}, \frac{1}{6}\right]$$
$$\left[\frac{1}{7}, \frac{1}{5}\right]$$
$$\left[\frac{1}{8}, \frac{1}{6}\right]$$

Explanation

$$\begin{aligned} & f(x)=\frac{1}{7-\sin 5 x} \\\\ & -1 \leq \sin 5 x \leq 1 \\\\ & -1 \leq-\sin 5 x \leq 1 \\\\ & -1+7 \leq 7-\sin 5 x \leq 1+7 \\\\ & 6 \leq 7-\sin 5 x \leq 8 \\\\ & \frac{1}{8} \leq \frac{1}{7-\sin 5 x} \leq \frac{1}{6} \\\\ & \frac{1}{8} \leq f(x) \leq \frac{1}{6} \\\\ & \text { Range }=\left[\frac{1}{8}, \frac{1}{6}\right] \end{aligned}$$

Comments (0)

Advertisement