JEE MAIN - Mathematics (2024 - 6th April Evening Shift - No. 30)
Explanation
Given a lot of 12 items, 3 are defective.
Good items, $$12-3=9$$
Let $$X$$ denote the number of defective items.
So, value of $$X=0,1,2,3$$
A sample of $$S$$ items is drawn.
$$P(X=0)=G G G G G$$
(here $$G$$ is good item and $$d$$ is defective)
$$\begin{aligned} & \frac{9}{12} \cdot \frac{8}{11} \cdot \frac{7}{10} \cdot \frac{6}{9} \cdot \frac{5}{8}=\frac{21}{132}=\frac{7}{44} \\ & P(X=1)=5\left[\frac{9 \cdot 8 \cdot 7 \cdot 6 \cdot 3}{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8}\right]=\frac{21}{44} \\ & P(X=2)=5\left[\frac{9 \cdot 8 \cdot 7 \cdot 3 \cdot 2}{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8}\right]=\frac{14}{44} \\ & P(X=3)=5\left[\frac{3 \cdot 2 \cdot 1 \cdot 9 \cdot 8}{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8}\right]=\frac{2}{44} \\ & P(X=4)=0 \\ & P(X=5)=0 \end{aligned}$$
$$X$$ | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
$$P(X)$$ | $$ \frac{7}{44} $$ |
$$ \frac{21}{44} $$ |
$$ \frac{14}{44} $$ |
$$ \frac{2}{44} $$ |
0 | 0 |
$$XP(X)$$ | 0 | $$ \frac{21}{44} $$ |
$$ \frac{28}{44} $$ |
$$ \frac{6}{44} $$ |
0 | 0 |
$$X^2P(X)$$ | 0 | $$ \frac{21}{44} $$ |
$$ \frac{56}{44} $$ |
$$ \frac{18}{44} $$ |
0 | 0 |
$$\begin{aligned} & \sigma_x^2=\sum X^2 P(x)-\left(\sum x P(x)\right)^2 \\ & =\frac{95}{44}-\left(\frac{55}{44}\right)^2 \\ & =\frac{4180-3025}{1936}=\frac{1155}{1936}=\frac{105}{176}=\frac{m}{n} \\ & =n-m=71 \end{aligned}$$
Comments (0)
