JEE MAIN - Mathematics (2024 - 6th April Evening Shift - No. 23)
Let $$[t]$$ denote the largest integer less than or equal to $$t$$. If $$\int_\limits0^3\left(\left[x^2\right]+\left[\frac{x^2}{2}\right]\right) \mathrm{d} x=\mathrm{a}+\mathrm{b} \sqrt{2}-\sqrt{3}-\sqrt{5}+\mathrm{c} \sqrt{6}-\sqrt{7}$$, where $$\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbf{Z}$$, then $$\mathrm{a}+\mathrm{b}+\mathrm{c}$$ is equal to __________.
Answer
23
Explanation
$$\int_\limits0^3\left(\left[x^2\right]+\left[\frac{x^2}{2}\right]\right) d x \quad=\int_\limits0^1 0 d x+\int_1^{\sqrt{2}} 1 d x+\int_\limits{\sqrt{2}}^{\sqrt{3}} 3 d x+$$
$$ \begin{aligned} & \int_\limits{\sqrt{3}}^2 4 d x+\int_\limits2^{\sqrt{5}} 6 d x+\int_\limits{\sqrt{5}}^{\sqrt{6}} 7 d x+\int_\limits{\sqrt{6}}^{\sqrt{7}} 9 d x+\int_\limits{\sqrt{7}}^{\sqrt{8}} 10 d x+\int_\limits{\sqrt{8}}^3 12 d x \\ & =31-6 \sqrt{2}-\sqrt{3}-\sqrt{5}-\sqrt{7}-2 \sqrt{6} \\ & \Rightarrow a=31, b=-6, c=-2 \\ & \Rightarrow a+b+c=23 \end{aligned}$$
Comments (0)
