JEE MAIN - Mathematics (2024 - 4th April Evening Shift - No. 7)
Let $$f(x)=\int_0^x\left(t+\sin \left(1-e^t\right)\right) d t, x \in \mathbb{R}$$. Then, $$\lim _\limits{x \rightarrow 0} \frac{f(x)}{x^3}$$ is equal to
$$\frac{1}{6}$$
$$-\frac{1}{6}$$
$$\frac{2}{3}$$
$$-\frac{2}{3}$$
Explanation
Given $$f(x)=\int_\limits0^x\left(t+\sin \left(1-e^t\right)\right) d t$$
Now, $$\lim _\limits{x \rightarrow 0} \frac{f(x)}{x^3}\left(\frac{0}{0} \text { form }\right)$$
$$\begin{aligned} & =\lim _{x \rightarrow 0} \frac{\int_\limits0^x\left(t+\sin \left(1-e^t\right)\right) d t}{x^3} \\ & =\lim _{x \rightarrow 0} \frac{x+\sin \left(1-e^x\right)}{3 x^2}\left(\frac{0}{0}\right) \\ & =\lim _{x \rightarrow 0} \frac{1+\cos \left(1-e^x\right)\left(-e^x\right)}{6 x}\left(\frac{0}{0}\right) \\ & =\lim _{x \rightarrow 0} \frac{-\sin \left(1-e^x\right)\left(e^x\right)^2+\cos \left(1-e^x\right)\left(-e^x\right)}{6} \\ & =-\frac{1}{6} \end{aligned}$$
Comments (0)
