JEE MAIN - Mathematics (2024 - 4th April Evening Shift - No. 18)

Let a relation $$\mathrm{R}$$ on $$\mathrm{N} \times \mathbb{N}$$ be defined as: $$\left(x_1, y_1\right) \mathrm{R}\left(x_2, y_2\right)$$ if and only if $$x_1 \leq x_2$$ or $$y_1 \leq y_2$$. Consider the two statements:

(I) $$\mathrm{R}$$ is reflexive but not symmetric.

(II) $$\mathrm{R}$$ is transitive

Then which one of the following is true?

Only (II) is correct.
Both (I) and (II) are correct.
Neither (I) nor (II) is correct.
Only (I) is correct.

Explanation

$$\begin{aligned} & \left(x_1, y_1\right) R\left(x_2, y_2\right) \\ & \text { If } x_1 \leq x_2 \text { or } y_1 \leq y_2 \end{aligned}$$

For reflexive;

$$\begin{aligned} & \left(x_1, y_1\right) R\left(x_1, y_1\right) \\ & \Rightarrow x_1 \leq x_1 \text { or } y_1 \leq y_1 \end{aligned}$$

So, $$R$$ is reflexive

For symmetric

When $$\left(x_1, y_1\right) R\left(x_2, y_2\right)$$

$$\Rightarrow x_1 \leq x_2 \text { or } y_1 \leq y_2$$

For $$\left(x_2, y_2\right) R\left(x_1, y_1\right)$$

$$\Rightarrow x_2 \leq x_1 \text { or } y_2 \leq y_1$$

Not true for $$(1,2)$$ and $$(3,4)$$

For transitive

Take pairs as $$(3,9),(4,6),(2,7)$$

$$(3,9) R(4,6)$$

as $$4 \geq 3$$

$$(4,6) R(2,7)$$

As $$7 \geq 6$$

But $$(3,9) R(2,7)$$

As neither $$2 \geq 3$$ nor $$7 \geq 9$$

So not transitive

Comments (0)

Advertisement