JEE MAIN - Mathematics (2024 - 4th April Evening Shift - No. 16)

If the value of the integral $$\int\limits_{-1}^1 \frac{\cos \alpha x}{1+3^x} d x$$ is $$\frac{2}{\pi}$$.Then, a value of $$\alpha$$ is
$$\frac{\pi}{2}$$
$$\frac{\pi}{4}$$
$$\frac{\pi}{3}$$
$$\frac{\pi}{6}$$

Explanation

$$\begin{aligned} & \text { Given, } \int_\limits{-1}^1 \frac{\cos \alpha x}{1+3^x} d x=\frac{2}{\pi} \\ & \begin{aligned} I & =\int_\limits{-1}^1 \frac{\cos \alpha x}{1+3^x} d x \\ \Rightarrow I & =\int_\limits0^1\left(\frac{\cos \alpha x}{1+3^x}+\frac{\cos \alpha x}{1+3^{-x}}\right) d x \\ & =\int_\limits0^1 \cos \alpha x d x \\ & =\left(\frac{\sin \alpha x}{\alpha}\right)_0^1 \\ & =\frac{\sin \alpha}{\alpha} \\ \Rightarrow & \frac{\sin \alpha}{\alpha}=\frac{2}{\pi} \\ \Rightarrow & \alpha=\frac{\pi}{2} \end{aligned} \end{aligned}$$

Comments (0)

Advertisement